
Abstract. Orbitals rigorously defined on molecular
fragments, like the extremely localized molecular orbi-
tals, represent a possible way to build up the electronic
structure of large molecules, using molecular fragments
assembled on small molecules. Of course a rigorous
localization is strictly connected to a reduction in the
number of variational parameters, which reflects itself in
an increased value of the associated energy. In order to
get a more accurate description of the target molecule,
we have developed a method which allows a relaxation
of the electronic structure based on transferred localized
orbitals. The relaxation is realized by means of a valence
bond technique, which in turn uses the localized nature
of the orbitals to reduce the number of excitations.
Applications to the transferability of extremely localized
molecular orbitals are presented.
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Introduction

The theoretical development of methods allowing us to
study large molecules is still a challenging target for the
computational chemist. The problems scientists have to
deal with in the field of drug design or in the modelling
related to the discovery of new materials require the
application of traditional methods of computational
chemistry to molecules of increasing complexity.

Molecular orbital (MO) methods have always had a
prominent role in the framework of theoretical chemis-
try, and owing to their orthogonality have permitted the

development of many well-known packages to deter-
mine the electronic structure of molecules with increas-
ing accuracy. For small molecules theoretical results
have reached an accuracy which is comparable, and
sometimes superior, to experimental values.

The application of theoretical chemistry to large
molecules requires methods which scale favourably with
the increasing dimension of the system, and a lot of
work has been done by different groups in order to build
up the so called N-linear methods [1, 2, 3, 4].

A possible approach to set up algorithms for the
study of large molecules derives from two ideas that are
well recognized by every chemist: the concepts of locality
and transferability. When looking at a new molecule,
our first step to rationalize its structure and properties is
to look up the different functional groups which con-
stitute it: we are looking for local entities. Once we have
determined them, we start to do previsions on the mol-
ecule, as we already know those of its different func-
tional groups: we are applying the transferability
property.

Hence it is quite natural that theoreticians have tried
to insert these ideas in the framework of different
models. Traditional MO methods do not seem adequate
for this purpose, owing to the delocalization of the
canonical MOs on the whole system. Also a slight
modification of the structure of the molecule, for
example, the addition of a methyl group, requires a
complete redetermination of all the MOs of the mole-
cule. In order to overcome these problems, different
well-known localization schemes have been proposed [5,
6, 7]. The MOs can be in fact transformed in different
sets characterized by different spatial extension, but with
the same energy value.

In this way it is possible to define local MOs (LMOs)
which allow us to recover the local concepts. However,
owing to the orthogonal nature of the LMOs, they are
characterized by the presence of tails which extend be-
yond the local region, preventing a rigorous application
of the transferability.
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Extremely localized MOs (ELMOs) or strictly local-
ized MOs [8, 9] or nonorthogonal localized MOs [10] are
MOs which are developed on only the atomic centres of
preselected molecular fragments and, in this way, they
have no tails on the atomic centres of the other frag-
ments. This is easily obtained by defining for each ELMO
a proper linear combination of atomic orbitals on only
the atoms which belong to its molecular fragment.

The ELMOs are, of course, closely connected to the
group function method introduced by McWeeny [11],
which can be considered as one of the first theoretical
attempts to describe a wavefunction through functions
associated with subsets of electrons. The ELMOs are not
orthogonal and, even though their definition and the
theory to determine them was set up many years ago [12],
recently there has been renewed interest in their determi-
nation and use [13, 14, 15, 16]. The algorithms to obtain
ELMOs are not trivial, as it is well known that serious
convergence difficulties arise. Couty et al. [16] have
explicitly treated the nonorthogonality using the Löwdin
formula for the computation of the nonorthogonalmatrix
elements. To reduce the computational cost associated
with the evaluation of the Hessian matrix, they computed
its diagonal blocks using an approximate formula, while
for the other blocks they used an updated scheme based
on the Davidon–Fletcher–Powell or Broyden–Fletcher–
Goldfarb–Shanno methods. Very recently, Szekeres and
Surjan [15] proposed a method based on the use of
appropriate projection operators to determine ELMOs.

In our laboratory we have developed a method [13]
based on the generalization of the equations proposed
by Gianinetti et al. [17] for the self-consistent field (SCF)
for molecular interactions. Very recently, we proposed
another approach [14] based on the equations by Stoll
[12] and we are now extending it to the density func-
tional theory [18]. After much work on the convergence
routines, we think we have realized a robust algorithm,
which up to now has always converged also when using
some well-known delicate localization schemes, such as
an extremely localized description of the p system of
benzene. We have tested the transferability of the EL-
MOs [19], showing that electronic properties of some
ortho-substituted biphenyl molecules determined at the
Hartree–Fock (HF) level are quite well reproduced by
optimizing only the ELMOs defined on the substituent
group, while keeping all the other ELMOs identical to
the corresponding ELMOs determined for the unsub-
stituted biphenyl molecule. We have also compared the
different transferability of ELMOs with respect to tails-
deleted LMOs in reproducing electrostatic properties of
acetone [14] determined at the HF level.

From these works it was evident that the ELMOs
provide results of superior quality with respect to the
LMOs, as one could easily guess owing to the non-
negligible perturbation introduced by the deletion of
the tails. It was also evidenced that a very close
agreement between the results obtained with trans-
ferred ELMOs and the HF ones can be obtained with
just a simple relaxation, such as that provided by a

single SCF iteration using the transferred ELMOs as
starting orbitals.

The ELMOs could also be a valuable tool to define
frontier region in the mixed quantum mechanics/
molecular mechanics methods based on the use of
localized MOs to describe the covalent bonds which
connect quantum and classical regions, according to the
local SCF proposed by Assfeld and coworkers [20, 21].

It is evident that the price to pay in order to have
rigorously defined ELMOs is a loss in the number of
variational parameters that we use to describe them.
This has a quite evident effect on the energy values
associated with the ELMO wavefunction, which are
significantly higher with respect to the restricted HF
(RHF) values, but also significantly lower with respect
to those obtained using LMOs after the deletion of tails.
Therefore, it appears quite important to develop meth-
ods which, starting from the ELMOs approach, try to
improve the wavefunction using cheap methods. One
could guess that the extremely localized nature of the
orbitals could help in this effort, similarly to the good
efficiency provided by the local MP nmethods [22] which
use the local nature of the orbitals to efficiently deter-
mine correlation energies.

In this paper, we propose a novel approach where
occupied and virtual ELMOs are used to build up a
valence bond (VB) expansion of the wavefunction. In
this approach the extremely localized nature of the
ELMOs is particularly relevant, as it permits us to sig-
nificantly reduce the VB expansion on the basis of a
‘‘distance’’ between the ELMOs involved in the excita-
tions. The proposed method is then particularly suitable
to assemble the wavefunction of large molecules using
the ELMOs determined on smaller fragments, as a
favourable scaling in the length of the VB expansion
with respect to the molecular dimensions should be ex-
pected. It is shown that the relaxation of the ELMOs
introduced by the VB expansion allows us to recover a
good percentage of energy with respect to the HF
wavefunction, without the need to perform a traditional
RHF calculation on the target molecule.

Test calculations were performed on the butane
molecule in order to assess the potential of the ELMO–
VB wavefunction. The transferability properties of the
present approach were then tested on the 3-pentanone
molecule using ELMOs built up on smaller fragments.

The proposed method can be considered as a natural
development of the perturbative configuration interac-
tion using localized orbitals [23, 24] and of the studies
carried out to reduce the configuration interaction
expansion using LMOs [25].

Theory

Let us consider a closed-shell molecule. ELMOs are
defined by partitioning the NMOs (where 2N is the total
number of the electrons) into nf molecular fragments,
where each of them is defined by its own basis set,
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belonging to the ith fragment. The ath ELMO of the ith
fragment can thus be written as
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l
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The coefficients ci
la are determined through a mini-

mization of the expectation value of the energy associ-
ated with the ELMO wavefunction:

wELMO ¼ A Uð Þ, with U ¼
Ynf

i

YN0
i

a

ui
au

i
a;

where A is the antisymmetrizer operator and N0
i is the

number of doubly occupied ELMOs belonging to the ith
fragment.

It should be noted that fragments can share atomic
orbitals; then a natural nonorthogonality between EL-
MOs of different fragments arises. Different algorithms
to determine ELMOs have been proposed [12, 13, 14, 15,
16]. It should be observed that the nonorthogonality of
the orbitals determines nontrivial convergence difficul-
ties.

The limitations introduced in the expansion definition
of the ELMOs causes an obvious increment of the en-
ergy associated with the ELMO wavefunction with re-
spect to the HF one. It is expected that this penalty
should be larger when ELMOs are determined on
smaller molecules and then transferred on a larger one
without optimization. Hence the development of strat-
egies to relax the ELMO wavefunction to get an energy-
lowering with respect to the value obtained by a simple
transfer of the ELMOs is of relevant interest.

To overcome the limitations connected with the
expansion definition of the ELMOs, they should be
combined, once the convergence is reached, with the
virtual orbitals of the other fragments. Linear combi-
nations of occupied orbitals of a fragment with their
own virtual orbitals cannot give a lowering in energy
owing to the Brillouin theorem, and the same remains
true if one tries to combine between them doubly
occupied orbitals of different fragments.

Hence, a relaxation of the ELMO wavefunction can
be obtained by only allowing the occupied ELMOs of a
fragment to delocalize using the virtual ELMOs of the
other fragments. In other words, we permit an interac-
tion between the ELMO wavefunction and a number of
structures derived from it by exciting the electrons from
the occupied ELMOs to the virtual ones. Owing to the
nonorthogonal nature of the ELMOs, their configura-
tion interaction can be thought of as a VB expansion:

WELMO�VB ¼ c0WELMO þ
Xnf

ir

XN0
i
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XN m
r

l
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alW

ir
al þ . . . ;

ð1Þ

where N m
r is the number of virtual ELMOs of the rth

fragment, cir
al is the weight of the structure Wir

al which is
a single excitation from the ath ELMO of the ith frag-
ment to the lth virtual orbital of the rth fragment, and is
expressed by

Wir
al ¼ A U
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where U
i
a

� �
is the product of all the occupied ELMOs

with the exception of the pair ui
au

i
a, i.e., U ¼

U
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is defined by

U ¼ U
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j
b] and H2

0;0 is the singlet spin

eigenfunction for the electrons belonging to the orbitals
ui

au
r
l which are singly occupied.
Of course the expansion of Eq. (1) could be extended

to higher orders of excitations, but here we are just
looking for a relaxation of the occupied ELMOs and
higher excitations would bring us to a very demanding
algorithm, removing the advantages to use an approach
based on localized orbitals.

For this reason we limit Eq. (1) to single excitations.
It should be recalled that in this approach, in contrast to
a traditional MO configuration interaction, single exci-
tations give a contribution to the energy as each ELMO
was obtained using only its own basis set.

Owing to the nonorthogonal nature of the orbitals,
the computation of the Hamiltonian matrix elements

Wir
al Hj jWjs

bm

D E
should require the use of the Löwdin

formula [26] for a system of 2N electrons, so the calcu-
lation would soon become prohibitive.

In order to reduce the computational effort, the
orbitals are subjected to the following transformations:

1. The occupied ELMOs are subjected to a Löwdin
orthogonalization giving rise to a new set of occupied

ELMOs ui
a

� �nf;N0
i

i¼1;a¼1
.

2. Each virtual orbital ur
l is subjected to a Gram–

Schmidt orthogonalization with respect to the Löwdin-
orthogonalized occupied ELMOs, and the orbitals

ur
b

� �nf;N m
r

r¼1;b¼1
are obtained.

The orthogonalization procedure just described was
chosen in order to have a new set of occupied orbitals
describing the same functional space of the original
occupied ELMOs. The Löwdin method was chosen to
reduce the deformation of the orbitals during the
orthogonalization step in order to maintain as much as
possible the localized nature of the orbitals. It should be
noted that when Eq. (1) involves all the single excita-
tions to the selected virtual orbitals, the results obtained
with the orthogonalized orbitals are identical to those
obtained with the starting nonorthogonal ELMOs.

A VB calculation is then performed using the ELMO
wavefunction WELMO built up using the occupied ui

a

orbitals and the single excitations Wir
al in the set of the

Gram–Schmidt orthogonalized virtual orbitals:
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WELMO�VB ¼ c0WELMO þ
Xnf
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It should be observed that step 2 does not introduce
an orthogonalization between the virtual orbitals, which
remain nonorthogonal. In this way a partial localization
nature of the virtual orbitals is preserved.

In order to perform the VB calculation, it is necessary
to compute the matrix elements of the Hamiltonian
operator between the structures appearing in the VB
expansion (Eq. 2). Owing to the orthogonality between
the virtual orbitals and the occupied ones, the calcula-
tion of these matrix elements can be greatly simplified
[27] through a straightforward manipulation of the
Löwdin formula. For example, the matrix elements
between a couple of single excitations, i.e.,

Wir
al Hj jWjs

bm

� �
, can be expressed in the following way:
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where U
ij
ab

� �
has already been defined and is applied

here to the ui
a orbitals, and H4

0;0 ¼ abH2
0;0 is the spin

function.
The structures contained in the bra and ket parts of

the previous equation are characterized by a common set
of N’=N)2 doubly occupied orbitals described by

U
ij
ab

� �
, which we here briefly indicate as /1/2…/N’,

and by four orbitals singlet paired and orthogonal to the

U
ij
ab

� �
alignment.

We indicate with 1a
r

	 
4
r¼1 and 1b

s

	 
4
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j
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i
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r
l and ui
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i
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j
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s
m and with wa and wb the single

excitations Wir
al and Wjs

bm, respectively.

The Hamiltonian matrix element of Eq. (3) is given by

Wa Hj jWbh i ¼ 2Dab

XN 0

k¼1
/k hj j/kh i þ Dab

XN 0
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where abj cdjh i ¼
RR

dr1dr2a r1ð Þb r1ð Þ 1
r1�r2j j c r2ð Þd r2ð Þ, and

Dab, Dab[rŒs] and Dab[rsŒtu] are the elements of the
transition density matrices with respect to zero, one and
two particles [11], respectively, and the heff operator

gives the effect of the electrons described by U
ij
ab

� �
on

the other electrons.
Equation (4) can be efficiently programmed, consid-

ering that the terms which explicitly take into account
the nonorthogonality of the orbitals are characterized by
summations with indexes ranging from 1 to 4. The
remaining terms contain expressions with indexes rang-
ing from 1 to N’, but as they do not vary significantly
when changing the excitations, it is possible to compute
them by appropriate differences with respect to the value
obtained with N’=N. For example, the first term of
Eq. (4), apart from the trivial multiplicative factor Dab,
can be computed through

XN

k¼1
/k hj j/kh i � ui

a hj jui
a

� 
� uj

b hj juj
b

D E
;

where the first term is independent of the pairs of exci-
tations considered.

Using the present approach it is possible to obtain an
algorithm which allows us to save more than 1 order of
CPU time with respect to a direct application of the
Löwdin formula.

Particular care has to be dedicated to the selection of
the virtual orbitals that have to be introduced in the VB
expansion. We have to recall that in the ELMO ap-
proach we obtain mi orbitals for each fragment; as the
fragments can share the same atomic basis functions, it

results that
Pnf

i
mi[M , where M is the total number of

basis functions. This fact does not cause any problem in
the determination of the ELMOs, but requires particular
attention in the VB expansion, as linear-dependence
problems can easily arise if no criteria are introduced in
the selection of the virtual orbitals.

As a matter of fact we noted that it is quite common
to find virtual ELMOs of a fragment which are linear
combinations of the occupied ELMOs of the other
fragments. In this case these orbitals are automatically
removed by our procedure during step 2 where they are
Gram–Schmidt orthogonalized with respect to the
occupied orbitals.

Of course this procedure does not guarantee that the
surviving virtual orbitals are not linearly dependent on
each other. In order to be sure to select a proper linearly
independent set of virtual orbitals, it is possible to sub-
mit the set of the virtual orbitals from step 2,

ur
b

� �nf;N m
r

r¼1;b¼1
, to a Gram–Schmidt procedure, and we

obtain a new set of orbitals which we denote

GSur
b

� �nf;N m
r

r¼1;b¼1
. If the norm of the orbital GSur

b imme-

diately after the Gram–Schmit orthogonalization step is

greater than a given threshold, the original ur
b orbital is
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added to the set of virtual orbitals that have to be
included in the VB expansion.

The use of the set ur
b

� �nf;N m
r

r¼1;b¼1
instead of

GSur
b

� �nf;N m
r

r¼1;b¼1
is due to the localized nature of the first

one, that allows us, as we will see in the examples
reported in this work, to favourably truncate the VB
expansion.

Test calculations

Some test calculations were performed to evaluate the
proposed approach.

First of all, we wanted to check both the capability of
the VB expansion in relaxing the ELMOs and the pos-
sibility to introduce criteria to reduce the length of the
expansion. After this step, we focused our attention on
the possibility to use the present approach to assemble
the wavefunction of a molecule using the ELMOs
determined on smaller fragments.

The first point was analysed using the butane mole-
cule, for which we used the geometry optimized at the
RHF level with the standard 6-31G basis set. To per-
form the ELMO calculation, we defined the molecular
fragments following the scheme depicted in Fig. 1.

Fragments 1–4 correspond to the cores of the carbon
atoms and are defined using only the atomic functions of
their respective centres; fragments 5, 6, 7, 9, 10, 12, 13,
15, 16 and 17 describe the C–H bonds and each of them
is defined using the corresponding atomic functions of
the carbon and hydrogen atoms describing that bond;
finally fragments 8, 11 and 14 describe the C–C bonds
and each of them is defined according to the atomic
functions of the two carbon atoms involved.

The RHF calculation was performed using the PC-
GAMESS package [28, 29], which was also used to ob-
tain the monoelectronic and bielectronic integrals nec-
essary to perform the ELMO–VB calculations; the
ELMO calculations were carried out using a modified
version of the PC-GAMESS package [14], and for the
ELMO–VB calculations we used a program written in
our laboratory to test the proposed method. It was
checked using a general purpose VB program [30].

The energy values are reported in Table 1. We can
observe that owing to the extremely localized nature of
the orbitals, the energy corresponding to the ELMO

wavefunction differs by 27.9 kcal/mol with respect to the
RHF value. This difference is largely increased, up to
80.9 kcal/mol, if we use a wavefunction built up using
LMOs obtained through the Pipek–Mezey procedure
[7], subjected to deletion of the tails outside the
molecular fragments defined in Fig. 1.

We then performed two ELMO–VB calculations,
denoted with ELMO–VB(1) and ELMO–VB(2), where
one or two virtual ELMOs for each fragment were se-
lected, respectively. The selected virtual orbitals were the
orbitals with the lowest orbital energies which survive
after the orthogonalization step and the check on the
linear independence described in the Theory section.

Owing to the orthogonalization with respect to the
occupied ELMOs, the virtual orbitals acquire a partial
delocalization with respect to the original ones, but
anyway they conserve a quite stringent localized nature,
as can be seen in the examples reported in Fig. 2.

The ELMO–VB(1) wavefunction, based on the use of
only one virtual orbital for each fragment, is constituted
by 289 excitations and it recovers 24% of the difference
energy between the RHF and the ELMO wavefunctions.
The use of two virtual orbitals for each fragment allows
the ELMO–VB(2) wavefunction to recover 84% of the
difference energy, still remaining a compact wavefunc-
tion, as it is constituted by 578 excitations.

In order to see the contributions of the excitations to
the ELMO–VB(1) and ELMO–VB(2) expansions, we
ordered the excitations according to their decreasing
absolute weights and we performed a series of ELMO–
VB calculations introducing an increasing number of
excitations according to their weights. In this way we
can have an idea of the relative importance of the dif-
ferent excitations.

The energy values of the different ELMO–VB wave-
functions are plotted against the number of excitations
included into the VB expansion in Fig. 3. The corre-
sponding percentages of energy recovered with respect
to the RHF value are reported in Fig. 4.

From Figs. 3 and 4 it is evident that not all the
structures have the same importance in the ELMO–VB
expansion. Roughly the same results of the complete
ELMO–VB wavefunction can be obtained with just half
the number of total excitations. This result can be as-
cribed to the localized nature of all the orbitals involved
in the VB expansion. The occupied orbitals, despite the
Löwdin orthogonalization, remain well localized, and

Fig. 1. Definition of the molecular fragments for the butane
molecule

Table 1. Energy values for the butane molecule. The acronyms are
described in the text

Method Energy (au) DE (kcal/mol)

RHF )157.23468353 0.00
LMO )157.10578937 80.88
ELMO )157.19015516 27.94
ELMO–VB(1) )157.20084621 21.23
ELMO–VB(2) )157.22766442 4.40
ELMO–VB(Top_1) )157.19903195 22.37
ELMO–VB(Top_2) )157.22499207 6.08
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the virtual ones acquire a partial but very limited delo-
calization after the Gram–Schmidt orthogonalization.
These considerations suggest that the VB expansion can
be compacted by taking into account the local nature of
the orbitals [23, 24, 25].

In order to investigate this point further we per-
formed two additional ELMO–VB calculations, where
we selected only the following excitations:

1. From an occupied ELMO describing a bond (i.e., a
C–C or a C–H fragment) to virtual ELMOs localized
on the first-neighbour fragments (e.g., from frag-
ment 5 to fragment 6 or from fragment 5 to frag-
ment 1) and on the second-neighbour fragments (e.g.,
from fragment 5 to fragment 9 or from fragment 5 to
fragment 2).

2. From an occupied ELMO describing a bond (C–C or
C–H) to virtual ELMOs localized on the third-

neighbour core fragments (e.g., from fragment 5 to
fragment 3 or from fragment 9 to fragment 4).

These are a sort of criteria based on what we could
call ‘‘a topological selection’’ aimed at inserting in the
VB expansion only the more interacting excitations.

The energy values obtained with these calculations are
reported in Table 1. The ELMO–VB(Top_1) calcula-
tion, using just a single virtual orbital for each fragment,
is constituted by 161 excitations (i.e., 56% of the VB
expansion with no topological selection), but it recovers
19.9% of the energy with respect to the HF value com-
pared with 24% if all the structures are included.

The favourable comparison is more evident with the
ELMO–VB(Top_2) wavefunction, using two virtual
ELMOs for each fragment and topological selection. In
this case the wavefunction is constituted by 322 excita-
tions (i.e., 56% with respect to the VB expansion with no

Fig. 2. Plots of two virtual
extremely localized molecular
orbitals (ELMOs) a before and
b after the Gram–Schmidt
orthogonalization described in
the text, corresponding to an
isosurface value of 0.04

Fig. 3. Energy values of different ELMO–valence
bond (VB) calculations with respect to the
increasing number of single excitations. The empty
(full) circles refer to the use of one (two) virtual
orbitals for each fragment
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topological selection), but it recovers 78.2% of the en-
ergy compared with 84.2% without restrictions on the
excitations included.

We then analysed the applicability of the present
approach to the transferability problem. We considered
the possibility to build up a proper wavefunction for the
3-pentanone molecule under severe conditions, i.e.,
using very simple starting molecular fragments. Using
the optimized geometry at the RHF level with the 6-31G
basis set, we first carried out an ELMO calculation using
the molecular fragments depicted in Fig. 5.

The definition of the fragments is similar to that
adopted for the butane molecule. In this case we observe
that the fragment 4, defined using the atomic orbitals of
the oxygen atom, is constituted by three occupied MOs,
describing the core and the lone-pairs electrons; frag-
ment 14 is built up using the atomic functions of the
oxygen atom and of the bonded carbon atom, and it is
constituted by two occupied MOs which describe the
C=O double bond.

The energy values are reported in Table 2. Once
again we observe that the energy associated with the
ELMO wavefunction is higher than the RHF value by
54.3 kcal/mol. Anyway we note that the use of LMOs
subjected to the deletion of tails in order to reproduce
the same definition of the molecular fragments of the
ELMOs increases this difference up to 124.7 kcal/mol.

In order to investigate the transferability properties
of the ELMOs, we then performed ELMO calculations
on the ethane, formaldehyde and acetaldehyde mole-
cules, using the same definition of the molecular frag-
ments adopted so far (i.e., bond and core/lone pair
fragments). In this way we defined ELMOs for all the
molecular fragments which are present in the 3-penta-
none molecule. The complete absence of tails permits the
direct transfer of the ELMOs from the three smaller
molecules to the 3-pentanone one (Fig. 6).

We observe that the molecular fragments used are
very simple, and, despite the different acidity of the
hydrogen atoms in the 3-pentanone molecule, we deci-
ded to use the same C–H fragment, determined on the
ethane molecule, for all the C–H bonds. This reflects our
intention to use severe conditions in order to test if the
ELMO–VB method can efficiently relax the transferred
orbitals. Of course, one expects that the results could be
further improved by the proper choice of the molecular
fragments to be determined, in a fashion similar to what
is done in the use of different atom types in the force
field approaches.

Fig. 4. Percentage of energy recovered
with respect to the restricted Hartree–
Fock value from different ELMO–VB
calculations against the number of
single excitations. The empty (full)
circles refer to the use of one (two)
virtual orbitals for each fragment

Fig. 5. Definition of the molecular fragments for the 3-pentanone
molecule

Table 2. Energy values for the 3-pentanone molecule.The acro-
nyms are described in the text

Method Energy (au) DE (kcal/mol)

RHF )269.91403081 0.00
LMO )269.71535498 124.67
ELMO )269.82754481 54.27
ELMO-Transf )269.82315703 57.02
ELMO–VB(1) )269.86551984 30.44
ELMO–VB(2) )269.89686563 10.77
ELMO–VB(Top_1) )269.85384479 37.77
ELMO–VB(Top_2) )269.89106528 14.41
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Using the transferred ELMOs we determined the
energy, ELMO-Transf, of the 3-pentanone molecule,
which is only 2.7 kcal/mol higher with respect to
that achieved through optimized ELMOs. So the
resulting difference with respect to the HF value is
57.0 kcal/mol.

We then performed ELMO–VB calculations using
one/two, ELMO–VB(1)/(2), virtual orbitals for each
fragment, selected with the same criteria described for
the butane molecule. The ELMO–VB(1)/(2) expansion is
constituted by 504 (1,008) excitations and allows us to
recover 44.0% (80.3%) of the energy difference between
the RHF and the ELMOs values. It is quite satisfying
that the use of transferred ELMOs and the ELMO–VB
approach permits us to obtain a wavefunction quite
close to the RHF calculation on the 3-pentanone mol-
ecule. It should be observed that there are 1,776 varia-
tional coefficients defining the 3-pentanone RHF
wavefunction, and only 290 coefficients which define the
ELMO wavefunction.

In order to see if it is possible to reduce the VB
expansion while retaining good accuracy, we performed
two additional ELMO–VB calculations using the topo-
logical selection individuated for the butane molecule,
the occupied orbitals of the oxygen lone pairs being
treated as the occupied orbitals describing the bonds.
The energy values are reported in Table 2. The two VB
expansions, denoted as ELMO–VB(Top_1)/(Top_2), are
now reduced to 224/448 excitations and they recover
30.4%/73.5% of the energy difference between the RHF
and ELMO calculations. Hence it can be concluded that
the topological selection allows us to halve the lengths of
the VB expansion, while the accuracy of the results is
only slightly affected.

Conclusions

The ELMOs provide a description of a molecule using
variationally determined orbitals. Owing to the large
reduction of the variational coefficients, the ELMO
wavefunction is characterized by a nonnegligible in-
crease of the energy. Anyway this is the price to pay in
order to have localized MOs which are really transfer-
able without perturbation. Of course a different ap-
proach could be to perform a posteriori localization of
the canonical MOs, and to delete their tails before
transferring them; however this procedure is character-
ized by a greater increase in the energy, and we have
recently evidenced [14] that the electronic properties also
suffer from such an approach.

It is therefore of relevant importance to develop
methods which are based on the ELMOs, and allow us,
at the same time, to increase the accuracy of the elec-
tronic description of the system.

In this paper we proposed a method based on a VB
expansion of the ELMO wavefunction. The localized
nature of the orbitals has permitted us to define a
topological selection of the excitations to be included
in the VB expansion, allowing us to reduce the com-
putational requests without substantial reduction in
the accuracy of the results. The calculations also evi-
denced that just two virtual orbitals for each fragment
allow us to obtain results close to the HF wavefunc-
tion.

These results prompted us to use the ELMO–VB
approach to build up the wavefunction for the 3-pen-
tanone molecule using ELMOs determined on smaller
fragments. The results have shown that, owing to the
extremely localized nature of the orbitals, it is possible to

Fig. 6. Transfer of the ELMOs
for the 3-pentanone molecule
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build up a good wavefunction for target molecules using
transferred ELMOs, and to increase its energetic accu-
racy by means of a compact VB expansion. This ap-
proach permits us to obtain accuracies similar to those
obtained by means of a traditional RHF calculation on
the target molecule.

In the present method we strongly limited the VB
expansion, having truncated it to single excitations.
Even if this could be considered a severe approximation,
we must recall that the aim of the present work is not to
introduce correlation using localized orbitals, but to
relax ELMOs in order to get results closer to the HF
ones with respect to those obtained by the ELMO
wavefunction. In addition, it should be observed that the
last objective of all the methods that try to assemble the
electronic structure using molecular fragments should be
the application to large molecules, so the number of
higher excitations for these systems would become pro-
hibitively expensive.
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